Necessary optimality conditions of a D.C. set-valued bilevel optimization problem
نویسندگان
چکیده
منابع مشابه
Necessary optimality conditions of a D.C. set valued bilevel optimization problem
In this paper, we consider a bilevel vector optimization problem where objective and constraints are set valued maps. Our approach consists of using a support function [1, 2, 3, 14, 15, 32] together with the convex separation principle for the study of necessary optimality conditions for D.C bilevel set valued optimization problems. We give optimality conditions in terms of the strong subdiffer...
متن کاملNecessary optimality conditions for bilevel set optimization problems
In this work, we use a notion of convexificator [25] together with the support function [3, 4, 15, 16, 41] to establish necessary optimality conditions for set valued bilevel optimization problems. Fortunately, the Lipschitz property of a set-valued mapping is conserved for its support function. An intermediate set-valued optimization problem is introduced to help us in our investigation.
متن کاملNecessary Optimality Conditions in Pessimistic Bilevel Programming Necessary Optimality Conditions in Pessimistic Bilevel Programming
This paper is devoted to the so-called pessimistic version of bilevel programming programs. Minimization problems of this type are challenging to handle partly because the corresponding value functions are often merely upper (while not lower) semicontinuous. Employing advanced tools of variational analysis and generalized differentiation, we provide rather general frameworks ensuring the Lipsch...
متن کاملNecessary Optimality Conditions for Multiobjective Bilevel Programs
The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...
متن کاملNew Optimality Conditions for the Semivectorial Bilevel Optimization Problem
The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization
سال: 2008
ISSN: 0233-1934,1029-4945
DOI: 10.1080/02331930701761508